索鎏敏

索鎏敏

简介:

研究员, 博士生导师。2013年于中国科学院物理研究所获理学博士学位, 曾先后在在美国马里兰大学 (2013-2016), 美国麻省理工学院 (MIT)(2016~2017)从事博士后研究工作,2017年加入中国科学院物理研究所。 近年来发表SCI论文共计 63 篇 (IF >10, 52 篇), 引用次数:> 1000次(2 篇)、> 100次(21 篇)。通讯/一作身份发表文章 33 篇,包括Science、Nature Energy、Nature Chemistry、Nature Communications、Science Advances、PNAS、Adv.Mater (4 篇)、Angew (3 篇)、JACS/JACS Au (2 篇)、Matter、Adv.Energy.Mater (3 篇)、ACS Nano/Nano Letter (3 篇) 等。文章发表以来 SCI 引用次数大于 8200 次,其中 60 %以上源于通讯/第一作者论文贡献,H因子 38



主要研究方向:

 新型二次电池体系的基础研究与开发,具体涵盖如下:
(1)新型电解液体系探索开发及相关基础科学问题研究
(2)安全、绿色、低成本水系碱金属二次电池研究(锂/钠离子电池)
(3)高能量密度金属锂基电池 (锂硫电池/金属锂电池)
(4)高能量密度多价转移二次电池体系(铝电池/镁电池)



过去的主要工作及获得的成果:

1. 电解液基础研究及在新电池体系中的应用

(1)提出新型宽电位窗口高盐浓度Water-in-Salt水系电解质及其在水系二次电池中应用

     将水系电解液电化学窗口由低于2.0V提高至3.0V, 为实现长寿命高压水系锂/钠离子电池提供了必要前提。 在水 系电解液中实现SEI膜, 推翻前人对水系锂电池无法形成SEI膜的认识,从根本上解决了水系二次电池“析氢问题”而导致循环寿命低的关键技术难题。将水系全电池输出电压由 < 1.5 V提高至 > 2 V 。 

     a. 锂基Water-in-Salt电解液 (Science, 2015 / Angew. Chem. Int. Edit. , 2016)   

     c. 水系SEI膜形成机制与精确调控技术 (Nature Chemistry 2021 / JACS 2017)

     d. 钠基Water-in-salt电解质  (Adv. Energ. Mater. 2017 / Adv. Mater. 2020) 

     f. Water-in-salt 离子输运机制研究  (ACS Nano, 2017 / JPCC,2021)

     g. Water-in-salt 抑制电极溶解机制研究 (Adv.Energ. Mater. 2020)

     h. 铝基Water-in-salt电解液 (ACS Applied Materials Interface. 2019)
   
(2)开拓了有机体系高盐浓度电解液及其在金属锂电池中应用

    提出高盐浓度电解质稳定金属锂负极想法,为提高金属锂循环稳定性和抑制锂枝晶提供了一种全新解决思路。将高盐浓度电解液用于锂硫电池同时解决了多硫离子溶解和稳定金属锂负极两项关键技术难题。

     a. 金属锂基用Solvent-in-Salt新型双功能电解质 (Nat. Commun., 2013)

     b. 提出高能量密度金属锂电池用5V全氟电解液体系 (PNAS, 2018 )

(3)提出有机超轻电解液概念并将其应用于锂-硫全电池

    a. 提出超轻电解液提高锂硫电池全电池能量密度> 20 % (Angew, 2021)

    b. 提出氟硅基超轻电解液在提高锂硫电池能量密度的条件下实现锂负极深度循环的长寿命(Adv.Mater. 2021)

2. 高能量密度金属锂基电池

  (1)高能量密度锂-硫电池 

      a. 电解液:高盐浓度Solvent-in-Salt双功能电解质 (Nat. Commun., 2013 );提出一系列超轻电解液提高锂硫电池全电池能量密度和循环寿命 (Angew, 2021,Adv.Mater. 2021)

      b. 电极:提出嵌入-转化混合硫正极实现高体积和能量密度锂硫电池 (Nature Energy, 2019)

      c. 隔膜:开发了一种高电子-离子电导电化学活性多功能隔膜涂层用于锂硫电池 (Matter, 2019)

  (2)无负极金属锂二次电池

      a. 正极:开发富锂层状三元正极材料提升高能量密度无负极金属锂电池循环寿命 (Angew, 2021)

      b. 负极集流体:提出液态金属涂层集流体诱导外延锂沉积实现无负极锂金属电池长寿命 (AEM, 2021)

3. 高离子/电子导电电极材料提升电池能量密度

      提过采用高离子-高电子电导电极材料替换电极中非活性物质(电解液,导电添加剂和粘合剂等),降低电极非活性物质占比,使得电极材料能量密度在电极层面实现最大程度发挥,进而提升电池器件能量密度。

     (1) 全固体电池:提出高能量密度全电化学活性物质全固态金属锂电池 (Adv. Mater. 2021)

     (2) 有机锂电池:高电子导电无机-有机复合正极材料提升有机全电池能量密度 (Adv. Mater. 2021)

     (3) 锂硫电池:嵌入-转化混合型富硫正极实现高体积和能量密度锂硫电池 (Nature Energy, 2019)

4. 多价转移铝/镁电池

     (1) 基于阳-阴离子共变价的高容量镁/铝正极材料

       a. 非晶阳离子-阴离子共变价富硫基过渡金属铝/镁离子正极 (Science Advances, 2021,JACS Au, 2021)

       b. 阳离子-阴离子共变价高容量黄铁矿型镁离子正极 (Nano Letter 2020) 

       a. 硫化钼镁离子正极(ACS Nano, 2020,Energy Storage Material. 2021)

   (2)Bipolar 双极柔性铝离子电池(ACS Materials Letter, 2020)

   (3)有机铝离子电池(JMCA, 2020)



代表性论文及专利:

-----------------------------------------  10 篇 论文代表作  --------------------------------------------

1. Jinming Yue, Kang Xu*,Liumin Suo*, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021 (Accepted)

2. Zejing Lin,  Liumin Suo*, et al. Amorphous Anion-Rich Titanium Polysulfides for Aluminum-Ion Batteries. Science Advances, (2021) 

3. Tao Liu,  Liumin Suo*, et al. Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch CellsAngew. Chem. Int. Edit, (2021)

4. Meiying Li, Ju Li*, Liumin Suo*, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteriesAdvanced Materials, (2021) 

5. Liangdong Lin, Liumin Suo*, et al., Li-Rich Li2[Ni0.8Co0.1Mn0.1]O2 for Anode-Free Lithium Metal Batteries.Angew. Chem. Int. Edit, (2021)

6. Minglei Mao, Liumin Suo*, et al., Electronic Conductive Inorganic Cathodes Promising High-Energy Organic BatteriesAdvanced Materials, (2021)

7. Weijiang Xue, Liumin Suo*, Ju Li*, et al., Intercalation-Conversion Hybrid Cathodes Enabling Li-S Full-Cell Architectures with Jointly Superior Gravimetric and Volumetric Energy Densities. Nature Energy, 4, 374, (2019) 【引用 > 170 次】

8. Liumin Suo, Ju Li* et al., Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries.PNAS, 115, 1156, (2018) 【引用 > 250 次】

9. Liumin Suo, Chunsheng Wang*, Kang Xu* et al., "Water-in-Salt" Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science, 350, 938, (2015) 【引用 > 1500 次】

10. Liumin Suo, Yong-sheng Hu* et al., A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nature Communications, 4, (2013) 【引用 > 1700 次】

-------------------- -------2017年10 月 加入物理所后  --------------------------------------

一. 发表研究论文:通讯/第一作者文章:25 篇 (* 通信作者:23 篇,一作:2 篇)

  • Nature 子刊(2篇):Nature Energy (1)/Nature Chemistry (1)
  • 综合性期刊(2篇):Science Advances (1)/PNAS (1)
  • 化学类顶刊(4篇):Angew (2) / JACS (1) / JACS Au (1) 
  • 材料类顶刊(5篇):Adv. Mater. (4) / Matter (1)
  • 能源材料类(5篇):Adv. Energ. Mater. (2) / ACS Energy Letter (1)/Energy Storage Material (2)
  • 纳米材料类(2篇):Nano Letter(1) / ACS Nano (1)
  • 其他(5篇):ACS Materials Letter (1) / ACS Applied Materials Interface (1)/JMCA (1) /ACS Applied Energy Materials (1) / JPCC(1)

---------------------------------------- 2021 年  -------------------------------------------

25. Jinming Yue, Kang Xu*,Liumin Suo*, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021 (Accepted)

24. Zejing Lin#, Minglei Mao#,  Liumin Suo*, et al. Amorphous Anion-Rich Titanium Polysulfides for Aluminum-Ion Batteries. Science Advances, (2021) 

23. Tao Liu,  Liumin Suo*, et al. Low-Density Fluorinated Solane Solvent Lasting Deep Cycle Lithium-Sulfur Batteries Life Advanced Materials, (2021) 

22. Tao Liu,  Liumin Suo*, et al. Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. Angew. Chem. Int. Edit, (2021)

21. Minglei Mao, Liumin Suo*, et al. Amorphous Redox-Rich Polysulfides for Mg Cathode. JACS Au, (2021)

20. Meiying Li, Ju Li*, Liumin Suo*, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteriesAdvanced Materials, (2021) 

19. Liangdong Lin, Liumin Suo*, et al., Li-Rich Li2[Ni0.8Co0.1Mn0.1]O2 for Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Edit, (2021)

18. Minglei Mao#, Shu Wang#, Liumin Suo*, et al., Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries. Advanced Materials, (2021)

17. Liangdong Lin, Liumin Suo*, et al., Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery. Advanced Energy Materials, (2021)

16. Anxing Zhou, Liumin Suo*, et al. TiO2 (B) Anode for High-Voltage Aqueous Li-ion Batteries, Energy Storage Material. (2021)

15. Pan Tan#, Jinming Yue, Liumin Suo*, Liang Hong* et al., Solid-like Nano-Anion-Cluster Constructs Free Lithium-ion Conducting  Super-Fluid Framework in Water-in-salt Electrolyte. The Journal of Physical Chemistry, (2021)

14. Yuxin Tong, Ang Gao, Qinghua Zhang*, Liumin Suo*, Lin Gu* et al., Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Material. (2021)

13. Binghang Liu, Liumin Suo*, et al., Sandwich-structure Corrosion-resistant Current Collector for Aqueous Batteries. ACS Applied Energy Materials. (2021)

------------------------------------------- 2020 年  ------------------------------------------------

12. Liwei Jiang, Oleg Borodin*, Liumin Suo*, Yong-Sheng Hu* et al., High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. Advanced Materials, 32, (2020)

11. Minglei Mao, Yuxin Tong# Lin Gu*, Liumin Suo*, et al., Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 20, 6852, (2020)

10. Jinming Yue, Liumin Suo*, et al., Interface Concentrated-Confinement Suppressing Cathode Dissolution in Water-in-Salt Electrolyte. Advanced Energy Materials, 10, (2020)  

9. Minglei Mao, Liumin Suo*, et al., Iodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo6S8 Nanosheets for Advanced Multivalent Batteries. ACS Nano, 14, 1102, (2020)

8. Zejing Lin, Liumin Suo*, et al., Wearable Bipolar Rechargeable Aluminum Battery. ACS Materials Letter, 2, 808, (2020)

7. Minglei Mao, Miao Liu*, Liumin Suo*, et al., Simplifying and accelerating kinetics enabling fast-charge Al battery. Journal of Materials Chemistry A, 8, 23834, (2020)

------------------------------------------- 2019 年  ------------------------------------------------

6. Weijiang Xue, Liumin Suo*, Ju Li*, et al., Intercalation-Conversion Hybrid Cathodes Enabling Li-S Full-Cell Architectures with Jointly Superior Gravimetric and Volumetric Energy Densities. Nature Energy, 4, 374, (2019)

5. Anxing Zhou, Liumin Suo*, et al., “Water-in-Salt” Electrolyte Promotes High-Capacity Fefe(Cn)(6) Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & Interfaces, 11, 41356, (2019)

4. Weijiang Xue, Liumin Suo*, Ju Li*, et al., Manipulating sulfur mobility enables advanced Li-S batteries. Matter 1 (4), 1047-1060

3. Lilu Liu,  Liumin Suo*, Yong-Sheng Hu*, et al. In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 4, 1650, (2019)

------------------------------------------- 2018 年  ------------------------------------------------

2. Liumin Suo, Ju Li*, et al., Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries. Proceedings of the National Academy of Sciences of the United States of America, 115, 1156, (2018)

1. Liumin Suo, Ju Li*, Kang Xu*, Chunsheng Wang*, et al., How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. Journal of the American Chemical Society, 139, 18670, (2017)

二. 邀请撰写约稿综述 (通讯作者)

   1. Energy & Fuels 专刊 "Recent Advances on Batteries and Energy Storage in China" 

       中国水系碱金属离子电池研究进展, Progress in rechargeable aqueous alkali-ion batteries in China(Energy & Fuels, 2021)

2. Water-in-Salt Widens the Electrochemical Stability Window: Thermodynamic and Kinetic Factors



目前的研究课题及展望:


   主要从事新型二次电池体系开发及相关基础科学问题研究,包括高电压水系电池体系,多电子转移电池体系以及高能量密度金属锂电池体系研究与开发工作等。



培养研究生情况:
计划每年招收硕博连读生或博士生3名,欢迎具有材料、物理、化学、电化学等专业背景的考生报考。 此外拟招2-3名博士后,欢迎具有相关背景的博士毕业生申请博士后岗位。

其他联系方式:
电话:010-82648175 Email:suoliumin@iphy.ac.cn

电话:
010-82648175

Email:
suoliumin@iphy.ac.cn


联系我们

CANTACT US