中科院物理所研究员,博士生导师。2006年,在中国科技大学物理系获得学士学位;2006-2011年,先后在中国科技大学和美国洛斯阿拉莫斯国家实验室中子衍射中心攻读研究生;2011-2013年,为该中心博士后;2013年8月加入中科院物理所。在JACS、Adv. Mater.、Nat. Comms.、PNAS、Acta Mater.、PRL、Nano Lett.等杂志发表论文70余篇,受邀在APS March Meeting、国际晶体学会议以及国内香山等会议上做邀请报告10余次。成果被“科技日报“、“CROSS”、“ChemistryViews”等杂志媒体专题报道。先后得到国家发改委、科技部、基金委、中科院、中物院等单位的经费支持,科技部重点研发计划项目负责人;2016年入选中科院青促会会员,并在2020年评为优秀会员。
1.搭建以金刚石对顶砧为主体的综合极端超高压环境。验证了理论预测的超高压下镧氢体系的近室温超导特性,超导转变温度达到了260K。在国际上首次解决了超高压下的磁测量问题-实现了金刚石对顶砧中NV中心自旋量子态的相干调控,利用这种技术首次发现了永磁材料Nd2Fe14B的常温高压下的铁磁淬灭行为。利用金刚石对顶砧并辅以高压中子、拉曼等手段发现多种高压磁有序及超导的竞争与协作行为,发现了多种新型高压超导体。发现了多种无机及有机材料在高压下的发光行为,实现了不发光-到发光的0-1的转变,为新的聚集发光及半导体发光理论做出了重要贡献。
2. 在高温高压条件下合成多种新型功能化硬质/超硬材料,如超硬-超导电物质特性以及多种超硬半导体材料,通过高压中子衍射/同步辐射等手段确定其精确的晶体结构及高压力学行为,探索超硬相的内在物理结构模型;突破了传统力学强化的瓶颈,提出了通过高压实现晶体强化的力学理论。
3. 在绵阳研究堆搭建国内第一套集成低温、气体高压的中子衍射样品环境;利用原位高压中子衍射技术研究新能源气体笼型水合物的高压结构以及反应动力学模型,提出了客体分子尺寸、极性与水分子在形成水合物过程中相互作用的物理机制,为水合物在能源和环境领域的应用提供了重要的理论依据。发现水的液-液相变行为,对于深刻认识氢键具有重要意义。
加入物理所后的主要论文:
[42] Wu L. et. al.;"Record-High Tc and Dome-Shaped Superconductivity in a Medium-Entropy Alloy TaNbHfZr under Pressure up to 160 GPa" Phys. Rev. Lett. 132, 166002 (2024) [Editors' Suggestion].
[41] Wang P. et. al.; "Hydrate Technologies for CO2 Capture and Sequestration: Status and Perspectives" Chem. Rev. 124, 110363 (2024).
[40] Bai Z. et. al.;"Ultrafast Decay of Interlayer Exciton in WS2/MoSe2 Heterostructure Under Pressure" Adv. Electron. Mater. 2400333 (2024).
[39] Yang Y. et. al.;"Ultrafast carrier and phonon dynamics in Bi2Se3 under high pressure" Phys. Rev. B 109,064307 (2024).
[38] Yu H. et. al.;"Observation of Emergent Superconductivity in the Topological Insulator Ta2Pd3Te5 via Pressure Manipulation" J. Am. Chem. Soc.146,3890 (2024).
[37] Yu H. et. al.;"Impact of Pressure on Structural, Vibrational, and Electrical Properties of Nodal-Line Semimetal HfGe0.92Te" ACS Appl. Electron. Mater. 6, 559 (2024).
[36] Bai Z. et. al.;"Enhanced carrier mobility in MoSe2 by pressure modulation" Nano Research 16, 12738 (2023).
[35] Du S. et al.; "Formation of the structure-II gas hydrate from low-concentration propane mixed with methane" Chinese Journal of Chemical Engineering 58, 306 (2023).
[34] Wang K. et. al.;"Evidence for an emergent anomalous metallic state in compressed titanium" PNAS 120, e2218856120 (2023).
[33] Zhang H. et. al..; "Superconductivity above 12 K with possible multiband features in CsCl-type PbS" Phys. Rev. B. 107, 174502 (2023).
[32] Yue B. et. al.; "Insulator-to-Superconductor Transition in Quasi-One-Dimensional HfS3 under Pressure" J. Am. Chem. Soc. 145, 1301 (2023).
[31] Zhai H. et. al.; "Stabilized Nitrogen Framework Anions in the Ga−N System" J. Am. Chem. Soc. 144, 21640 (2022).
[30] Dai J. et. al.;"Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures" CPL Express Letter,封面, 39 117601 (2022)
[29] Tong S. et al.;"Fluorescence-based monitoring of the pressure-induced aggregation microenvironment evolution for an AIEgen under multiple excitation channels" Nat. Comms. 13,5234 (2022).
[28] Du S. et. al.; "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation" Energies, 15, 4261 (2022).
[27] Hong F. et. al.;"Possible superconductivity at ~70 K in tin hydride SnHx under high pressure" Materials Today Physics, 22, 100596 (2022).
[26] Zheng X. et. al.; "The Discovery of a Superhard P-type Transparent Semiconductor: Al2.69B50" Materials Horizons 9, 748, (2022)
[25] Ma L. et. al.; "High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH6 up to 215 K at a Pressure of 172 GPa" Phys. Rev. Lett. 128, 167001 (2022).
[24] Du S et. al.; "Synthesis and Phase Behavior of Methane Hydrate in a Layered Double Hydroxide: An Experimental and Molecular Dynamics SimulationStudy" J. Phys. Chem. C 125, 7889 (2021).
[23] Ma X. et. al.; "Robust Interlayer Exciton in WS2/MoSe2 van der Waals Heterostructure under High Pressure" Nano Lett., 21, 8035 (2021)
[22] Ma X. et. al.; "Dimensional crossover tuned by pressure in layered magnetic NiPS3" Sciense China:PMA 64, 297011 (2021)
[21] Zhao L. et. al.; "Monoclinic EuSn2As2: A Novel High-Pressure Network Structure" Phys. Rev. Lett. 126, 155701 (2021)
[20] Yu X. et. al.; "CH4 Gas Extraction by CO2: Substitution in Clathrate Hydrate through Bimolecular Iteration" Chi. Phys. Lett. 37, 048201 (2020).
[19] Hong F. et. al.; "Superconductivity of Lanthanum Superhydride Investigated Using the Standard
Four-Probe Configuration under High Pressures" Chi. Phys. Lett. 37, 107401 (2020). (top cited award,超高压近室温超导转变记录,Tc∼260K.)
[18] Shang Y. et. al., “Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins” CPL Express Letter 36, 086201 (2019).(年度亮点工作)
[17] Liu M. et. al., “Concurrent enhancement of strength and ductility for Al-Si binary alloy by refining Si phase to nanoscale” Materials Science & Engineering A 751, 303 (2019)
[16] Zhang S. et. al., “Unprecedented plastic flow channel in γ-B28 through ultrasoft bonds: A challenge to superhardness” Phys Rev. M 2, 123602 (2018).
[15] Zheng X. et. al., “magnetic origin of phase stability in cubic c-MoN” Appl. Phys Lett. 113, 221901 (2018).
[14] Yin Z. et. al., “Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics” Nano Letter 18, 7085 (2018).
[13] Yu X. et. al., “High-Pressure Synergetic Measurement Station (HP-SymS)”. Chi. Phys. B 27, 070701 (2018).
[12] Ma T. et. al., “Ultrastrong Boron Frameworks in ZrB12: A Highway for Electron Conducting”. Advanced Materials 29, 1604003 (2017).
[11] Wang C. et. al., “High stored energy of metallic glasses induced by high pressure” Appl. Phys. Lett. 109, 221904-1(2017)
[10] Tan J. et. al., “Stoichiometric-NbN: the most incompressible cubic transition metal mononitride”. Phys. Status Solidi B 2017, 00, 1700063 (2017).
[9] Xue R. et. al., “Enhanced kinetic stability of a bulk metallic glass by high pressure” Appl. Phys. Lett. 109, 221904 (2016).
[8] He L. et. al., “Tuning lattice stability and mechanical strength of ultraincompressible tungsten carbides by varying the stacking sequence” Phys. Rev. B 93, 184104 (2016).
[7] Wang S. et. al., “Unusual Mott transition in multiferroic PbCrO3.” PNAS, 112,1532 (2015).
[6] Wang S. et. al., “A new Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications.” J. Am. Chem. Soc. 137, 4815 (2015).
[5] Yu X. et. al., “High pressure Phase-Transition Induced Texture Evolution and Strengthening in Zirconium Metal: Experimental and Modeling.” Sci. Rep. 5, 12552 (2015).
[4] Han L. et. al., “Hardness, elastic and electronic properties of chromium monoboride” Appl. Phys. Lett. 106 221902 (2015).
[3] Yu X. et. al., “Crystal structure and encapsulation dynamics of ice II-structured neon hydrate”, PNAS 111, 10456 (2014).
[2] Zhu J. et. al., “Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate”, Nat. Comms. 5, 4128 (2014).
[1] Yu X.* e.t al., “Compression-Tension Deformation Study of Nanocrystalline Nickel at High Pressure and Temperature Conditions”, Appl. Phys. Lett. 103. 043118 (2013)
010-81259989
010-81259990
Email:
yuxh@iphy.ac.cn