于晓辉

于晓辉

简介:

中科院物理所研究员,博士生导师。2006年,在中国科技大学物理系获得学士学位;2006-2011年,先后在中国科技大学和美国洛斯阿拉莫斯国家实验室中子衍射中心攻读研究生;2011-2013年,为该中心博士后;2013年8月加入中科院物理所。在JACS、Adv. Mater.、Nat. Comms.、PNAS、Acta Mater.、PRL、Nano Lett.等杂志发表论文70余篇,受邀在APS March Meeting、国际晶体学会议以及国内香山等会议上做邀请报告10余次。成果被“科技日报“、“CROSS”、“ChemistryViews”等杂志媒体专题报道。先后得到国家发改委、科技部、基金委、中科院、中物院等单位的经费支持,科技部重点研发计划项目负责人;2016年入选中科院青促会会员,并在2020年评为优秀会员。



主要研究方向:
1)利用金刚石对顶砧并集成低温输运测量及光谱测量等手段,在超高压条件下进行物质结构及综合物性调控,实现高压下的绝缘体-金属转变、超导转变及磁相变等,绘制完整的物质高压相图。

2)利用大腔体压机技术合成新型功能化超硬材料,利用高熵纳米晶化等手段解决传统超硬陶瓷的低韧性及无功能性的瓶颈,构建新型超硬-超韧-功能化陶瓷的基础力学量子化理论。

3) 利用气体高压中子衍射解决笼型水合物(可燃冰)体系的结构及反应动力学问题,深度理解水合物、液态水及多种高压冰结构的氢键本质以及水中氢的核量子行为。
 

过去的主要工作及获得的成果:

1.搭建以金刚石对顶砧为主体的综合极端超高压环境。验证了理论预测的超高压下镧氢体系的近室温超导特性,超导转变温度达到了260K。在国际上首次解决了超高压下的磁测量问题-实现了金刚石对顶砧中NV中心自旋量子态的相干调控,利用这种技术首次发现了永磁材料Nd2Fe14B的常温高压下的铁磁淬灭行为。利用金刚石对顶砧并辅以高压中子、拉曼等手段发现多种高压磁有序及超导的竞争与协作行为,发现了多种新型高压超导体。发现了多种无机及有机材料在高压下的发光行为,实现了不发光-到发光的0-1的转变,为新的聚集发光及半导体发光理论做出了重要贡献。

2. 在高温高压条件下合成多种新型功能化硬质/超硬材料,如超硬-超导电物质特性以及多种超硬半导体材料,通过高压中子衍射/同步辐射等手段确定其精确的晶体结构及高压力学行为,探索超硬相的内在物理结构模型;突破了传统力学强化的瓶颈,提出了通过高压实现晶体强化的力学理论。

3. 在绵阳研究堆搭建国内第一套集成低温、气体高压的中子衍射样品环境;利用原位高压中子衍射技术研究新能源气体笼型水合物的高压结构以及反应动力学模型,提出了客体分子尺寸、极性与水分子在形成水合物过程中相互作用的物理机制,为水合物在能源和环境领域的应用提供了重要的理论依据。发现水的液-液相变行为,对于深刻认识氢键具有重要意义。
 



代表性论文及专利:

加入物理所后的主要论文:

[42] Wu L. et. al.;"Record-High Tc and Dome-Shaped Superconductivity in a Medium-Entropy Alloy  TaNbHfZr under Pressure up to 160 GPa" Phys. Rev. Lett. 132, 166002 (2024) [Editors' Suggestion]. 

[41] Wang P. et. al.; "Hydrate Technologies for CO2 Capture and Sequestration: Status and Perspectives" Chem. Rev. 124, 110363 (2024).

[40] Bai Z. et. al.;"Ultrafast Decay of Interlayer Exciton in WS2/MoSe2 Heterostructure Under Pressure" Adv. Electron. Mater. 2400333 (2024). 

[39] Yang Y. et. al.;"Ultrafast carrier and phonon dynamics in Bi2Se3 under high pressure" Phys. Rev. B 109,064307 (2024).

[38] Yu H. et. al.;"Observation of Emergent Superconductivity in the Topological Insulator Ta2Pd3Te5 via Pressure Manipulation" J. Am. Chem. Soc.146,3890 (2024).

[37] Yu H. et. al.;"Impact of Pressure on Structural, Vibrational, and Electrical Properties of Nodal-Line Semimetal HfGe0.92Te" ACS Appl. Electron. Mater. 6, 559 (2024).

[36] Bai Z. et. al.;"Enhanced carrier mobility in MoSe2 by pressure modulation" Nano Research 16, 12738 (2023).

[35] Du S. et al.; "Formation of the structure-II gas hydrate from low-concentration propane mixed with methane" Chinese Journal of Chemical Engineering 58, 306 (2023). 

[34] Wang K. et. al.;"Evidence for an emergent anomalous metallic state in compressed titanium" PNAS 120, e2218856120 (2023).

[33] Zhang H. et. al..; "Superconductivity above 12 K with possible multiband features in CsCl-type PbS"  Phys. Rev. B.  107, 174502 (2023).

[32] Yue B. et. al.; "Insulator-to-Superconductor Transition in Quasi-One-Dimensional HfS3 under Pressure" J. Am. Chem. Soc. 145, 1301 (2023).

[31] Zhai H. et. al.; "Stabilized Nitrogen Framework Anions in the Ga−N System" J. Am. Chem. Soc. 144, 21640 (2022).

[30] Dai J. et. al.;"Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures" CPL Express Letter,封面, 39 117601 (2022) 

[29] Tong S. et al.;"Fluorescence-based monitoring of the pressure-induced aggregation microenvironment evolution for an AIEgen under multiple excitation channels" Nat. Comms. 13,5234 (2022).

[28] Du S. et. al.; "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation" Energies, 15, 4261 (2022).

[27] Hong F. et. al.;"Possible superconductivity at ~70 K in tin hydride SnHx under high pressure" Materials Today Physics, 22, 100596 (2022).

[26] Zheng X. et. al.; "The Discovery of a Superhard P-type Transparent Semiconductor: Al2.69B50" Materials Horizons 9, 748, (2022)

[25] Ma L. et. al.; "High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH6 up to 215 K at a Pressure of 172 GPa" Phys. Rev. Lett. 128, 167001 (2022).

[24] Du S et. al.; "Synthesis and Phase Behavior of Methane Hydrate in a Layered Double Hydroxide: An Experimental and Molecular Dynamics SimulationStudy" J. Phys. Chem. C 125, 7889 (2021).

[23] Ma X. et. al.; "Robust Interlayer Exciton in WS2/MoSe2 van der Waals Heterostructure under High Pressure" Nano Lett., 21, 8035 (2021)

[22] Ma X. et. al.; "Dimensional crossover tuned by pressure in layered magnetic NiPS3" Sciense China:PMA 64, 297011 (2021)

[21] Zhao L. et. al.; "Monoclinic EuSn2As2: A Novel High-Pressure Network Structure" Phys. Rev. Lett. 126, 155701 (2021)

[20] Yu X. et. al.; "CH4 Gas Extraction by CO2: Substitution in Clathrate Hydrate through Bimolecular Iteration" Chi. Phys. Lett. 37, 048201 (2020).

[19] Hong F. et. al.; "Superconductivity of Lanthanum Superhydride Investigated Using the Standard
Four-Probe Configuration under High Pressures" Chi. Phys. Lett. 37, 107401 (2020). (top cited award,超高压近室温超导转变记录,Tc∼260K.)
[18] Shang  Y. et. al., “Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins” CPL Express Letter 36, 086201 (2019).(年度亮点工作)
[17] Liu M. et. al., “Concurrent enhancement of strength and ductility for Al-Si binary alloy by refining Si phase to nanoscale” Materials Science & Engineering A 751, 303 (2019) 
[16] Zhang S. et. al., “Unprecedented plastic flow channel in γ-B28 through ultrasoft bonds: A challenge to superhardness” Phys Rev. M 2, 123602 (2018). 
[15] Zheng X. et. al., “magnetic origin of phase stability in cubic c-MoN” Appl. Phys Lett. 113, 221901 (2018). 
[14] Yin Z. et. al., “Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics” Nano Letter 18, 7085 (2018).
[13] Yu X. et. al., “High-Pressure Synergetic Measurement Station (HP-SymS)”. Chi. Phys. B 27, 070701 (2018). 
[12] Ma T. et. al., “Ultrastrong Boron Frameworks in ZrB12: A Highway for Electron Conducting”. Advanced Materials 29, 1604003 (2017).
[11] Wang C. et. al., “High stored energy of metallic glasses induced by high pressure” Appl. Phys. Lett. 109, 221904-1(2017)
[10] Tan J. et. al., “Stoichiometric-NbN: the most incompressible cubic transition metal mononitride”. Phys. Status Solidi B 2017, 00, 1700063 (2017).
[9] Xue R. et. al., “Enhanced kinetic stability of a bulk metallic glass by high pressure” Appl. Phys. Lett. 109, 221904 (2016). 
[8] He L. et. al., “Tuning lattice stability and mechanical strength of ultraincompressible tungsten carbides by varying the stacking sequence” Phys. Rev. B 93, 184104 (2016). 
[7] Wang S. et. al., “Unusual Mott transition in multiferroic PbCrO3.” PNAS, 112,1532 (2015). 
[6] Wang S. et. al., “A new Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications.” J. Am. Chem. Soc. 137, 4815 (2015).
[5] Yu X. et. al., “High pressure Phase-Transition Induced Texture Evolution and Strengthening in Zirconium Metal: Experimental and Modeling.” Sci. Rep. 5, 12552 (2015).
[4] Han L. et. al., “Hardness, elastic and electronic properties of chromium monoboride” Appl. Phys. Lett. 106 221902 (2015).
[3] Yu X. et. al., “Crystal structure and encapsulation dynamics of ice II-structured neon hydrate”, PNAS 111, 10456 (2014).
[2] Zhu J. et. al., “Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate”, Nat. Comms. 5, 4128 (2014).
[1] Yu X.* e.t al., “Compression-Tension Deformation Study of Nanocrystalline Nickel at High Pressure and Temperature Conditions”, Appl. Phys. Lett. 103. 043118 (2013)

 



目前的研究课题及展望:
1、发展具有国际竞争力的超高压金刚石对顶砧实验技术并以此进行物质超高压结构及物性的综合极端条件下量子调控,尤其在超高压金属氢及氢化物、新型非常规超导体的高压调控以及压致发光机理等方向进行重点研究。
2、探索新型超硬-超韧-功能型材料,并依此构建新型强-韧化陶瓷缺陷力学量子理论。
3、利用高压中子衍射研究水的氢键本质及氢的核量子行为,理解水合物和水的高压相转变及动力学行为

目前,主持多项国家发改委、科技部重点研发计划、国家基金委面上及青年基金。

 

培养研究生情况:
目前,已毕业联合培养研究生一名,在读5名。拟每年招收研究生1-2名

其他联系方式:

010-81259989

010-81259990

Email:
yuxh@iphy.ac.cn


联系我们

CANTACT US