常国庆

常国庆

简介:

本科和硕士毕业于清华大学电子工程系,2006年于美国密歇根大学电机工程系获得博士学位。在密歇根大学超快光科学中心从事博士后1年之后,到麻省理工电子工程系从事博士后及Research Scientist工作。2012年,获聘德国亥姆霍兹研究员(全德国每年不超过20人),在德国电子同步辐射国家实验室(DESY)创建了超快激光光学与相干显微技术课题组,担任课题组长,独立PI,于2016年底通过Tenure评审获得永久职位,2017年底到中国科学院物理研究所光物理重点实验室全职工作。已发表期刊文章80篇和国际会议论文180多篇,提交专利申请17项,已经获得一项美国专利和四项中国专利,在国际学术会议(包括CLEO、CLEO-PR、APLS、AFL、Photonics West、Photonics Asia, OSA annual meeting等)作特邀报告50多次,多次担任分会场主席;并在美国、德国、中国大陆以及中国台湾各大学和研究所做邀请报告150多次。

担任美国光学学会期刊《Optics Express》编委、《High Power Laser Science & Engineering》编委、《Applied Sciences》编委、《光电产品与资讯》编委、《光子学报》编委、《应用光学》特邀编委、《Light: Science & Applications》特邀编委、《Advanced Photonics》特邀编委,担任美国光学学会期刊OPEx-OMEx客座编委。

担任如下国际会议的组委会成员:激光与光电子国际会议(CLEO)、美国光学学会非线性光学会议(OSA Nonlinear Optics)、亚太激光会议(APLS)、亚洲光子学会议(Photonic Asia)、信息光学与光子学会议(CIOP)、亚太激光与光电子国际会议(CLEO-PR)、先进光纤激光会议(AFL)、国际超快科学会议(UltrafastX)和国际高功率激光科学与工程会议(HPLSE);2023年担任美国光学学会非线性光学会议(OSA Nonlinear Optics)非线性导波光学专题主席。

担任全国光电测量标准委员会委员、国家药监局器审中心外聘专家、中国技术市场协会医疗器械科技创新专业委员会学术委员中国光学十大进展推荐委员会委员、德国汉堡大学博士论文国际评审专家、新加坡科学技术局国际评审专家、中国科学院优秀博士学位论文通讯评议专家、瑞士自然科学基金国际评审专家、全国研究生教育评估监测专家、光学工程与光学领域期刊线上评审专家、科技部国家重点研发计划“引力波探测”重点专项项目专家组成员。

2015年至今,创建并运营公益性微信公众号“光波常”,发布《非线性光学》、《给生物学家讲光学》等课程,撰写前沿光学科研论述及分享科研心得,吸引了一万两千余名光学领域的科研工作者订阅。受《人民日报》特邀在其国际版撰写文章《浅谈神秘之光—激光》;受中国科普博览网之邀,撰写了《获2018诺奖的激光物理技术 为什么要用鸟叫命名?》科普文章,阅读量超过50万次;受《现代物理知识》之邀,撰写了《超快强激光及其应用—从2018年诺贝尔物理学奖谈起》;受《光电产品与资讯》之邀,撰写了《60年前群雄逐鹿—激光发明的历程与启示》;受《物理》之邀,撰写了《Peter Franken与非线性光学》。作为《Advanced Photonics》特邀编辑,为其News and Commentaries栏目采访著名光学科学家。因为科普工作荣获2021年度播光人奖,当选中国科学院大学教育基金会第一届公益科学家俱乐部成员。



主要研究方向:

近5年主要发展新型超快非线性光学技术,突破超快光纤激光器在功率放大、波长调谐两方面的技术瓶颈,从而利用所研发的新型超快光纤激光解决其他交叉领域中的重要科学问题,具体研究方向包括高功率高能量超快光纤激光技术、超快生物医学光子学、超快中红外激光技术和超快非线性光纤光学
 



过去的主要工作及获得的成果:

1. 提出基于预啁啾管理的光纤脉冲放大的新思路,实现高功率非线性光纤放大的新方案;

2. 发明基于自相位调制光谱展宽的新型波长调谐技术(SESS);

3. 利用高能量SESS飞秒脉冲光源驱动光学差频产生,突破中红外激光频率梳的功率瓶颈,发展新型长波中红外双光梳光谱技术;

4. 产生波长位于生物透过窗口的飞秒脉冲,发展面向癌症检测的多模态多光子显微成像技术。

(a) 肠腺癌组织SHG / THG / 2PEF / 3PEF成像。在 (c) - (e) (白色虚线方块)中放大了不同的感兴趣区域。(b) 相应的H&E染色图像。(c) 正常肠粘膜组织的2PEF/ 3PEF成像。(d) 正常肠粘膜组织的SHG / THG成像。(e) 间质纤维和脂肪空泡的SHG成像,红色箭头:肠腺,蓝色箭头:基底膜,绿色箭头:杯状细胞分泌的黏液,白色箭头:巨噬细胞,黄色箭头:间质纤维,紫色箭头:脂肪空泡。比例尺:200μm



代表性论文及专利:

期刊论文

[83] Y. T. Xing, R. Z. Chen, L. H. Zhang, Y. B. Chen, S. Zhang, X. C. Diao, Y. Liu, Y. S. Shi, Z. Y. Wei, and G. Q. Chang, “SLAM medical imaging enabled by pre-chirp and gain jointly managed Yb-fiber laser,” Biomed. Opt. Express 15, 911 (2024)

[82] X. D. Shao, H. N. Han, H. B. Wang, Y. Hu, C. Z. Li, H. Teng, G. Q. Chang, B. B. Wang, and Z. Y. Wei, “High power optical frequency comb with 10-19 frequency instability,” Opt. Express 31, 32813 (2023)

[81] Z. Shi, J. S. Wang, Y. Zhang, J. L. Wang, Z. Y. Wei, and G. Q. Chang, “Generation of 107-W, 1.07-mJ femtosecond pulses from chirped- and divided-pulse Sagnac Yb-fiber amplifier by suppression of static mode degradation,” J. Opt. Soc. Am. B 40, 2429 (2023)

[80] J. S. Wang, D. L. Wang, and G. Q. Chang, “Dispersion managed SPM-enabled spectral selection,” Acta Phys. Sin. 72, 094205 (2023) (in Chinese)

[79] Z. Shi, R. Z. Chen, and G. Q. Chang, “Theoretical analysis of self-phase-modulation-enabled spectral selection in hollow core fibers,” J. Opt. Soc. Am. B 40, 782 (2023)

[78] Y. Liu, J. M. Zhao, Z. Y. Wei, F. X. Kaertner, and G. Q. Chang, “High-power, high- repetition-rate tunable longwave mid-IR sources based on DFG in the OPA regime,” Opt. Lett. 48, 1052 (2023) (Editor’s pick)

[77] W. Liu, Z. C. Li, R. Z. Chen, and G. Q. Chang, “Energy scaling of wavelength tunable SESS source by circularly polarized pulses,” Chinese Lasers 50, 0208001 (2023) (in Chinese)

[76] X. Y. Wang, D. Zhang, Y. T. Xing, J. H. Wu, J. Jiang, G. Q. Chang, and L. Y. Li, “Applications of multiphoton microscopic imaging in gastric cancer,” Technology in Cancer Research and Treatment 21, 1-13 (2022)

[75] J. S. Wang, R. Z. Chen, and G. Q. Chang, “On the frequency spanning of SPM-enabled spectral broadening: analytical solutions,” Opt. Express 30, 33664 (2022)

[74] R. Z. Chen, Y. T. Xing, Y. Zhang, D. L. Wang, J. L. Wang, Z. Y. Wei, and G. Q. Chang, “Nonlinear amplification in ultrafast fiber laser systems [invited review],” Acta Photonica Sinica 51, 0751415 (2022) (in Chinese)

[73] X. Y. Wang, Y. T. Xing, R. Z. Chen, X. Q. Jia, J. H. Wu, J. Jiang, L. Y. Li, and G. Q. Chang, “SLAM driven by a femtosecond source based on SPM-enabled spectral selection,” Acta Phys. Sin. 71, 104204 (2022) (in Chinese)

[72] Y. B. Su, S. B. Fang, S. Wang, Y. Y. Liang, G. Q. Chang, X. K. He, and Z. Y. Wei, “Optimal generation of delay-controlled few-cycle pulses for high harmonic generation in solids,” Appl. Phys. Lett. 120,121105 (2022)

[71] X. C. Diao, R. Z. Chen, and G. Q. Chang, “Particle swarm optimization of SPM-enabled spectral selection to achieve octave-spanning wavelength shift,” Opt. Express 29, 39777 (2021)

[70] Y. Liu, Q. Cao, X. C. Diao, Z. Y. Wei, and G. Q. Chang, “Longwave mid-IR femtosecond sources based on difference-frequency generation driven by ultrafast fiber lasers [invited review],” Infrared and Laser Engineering 50, 20210368 (2021)

[69] R. Z. Chen, Z. Shi, and G. Q. Chang, “Pre-chirp managed adiabatic soliton compression in pressure-gradient in hollow core fibers,” Photonics 8, 357 (2021)

[68] Y. Su, S. B. Fang, H. Y. Liu, Y. T. Gao, K. Zhao, G. Q. Chang, and Z. Y. Wei, “Efficient generation of intense supercontinuum compressible to sub-cycle pulse width,” Appl. Phys. Lett. 118, 261102 (2021)

[67] R. C. Lv, H. Teng, J. F. Zhu, Y. Yu, W. Liu, G. Q. Chang and Z. Y. Wei, “High power Yb-fiber laser amplifier based on nonlinear chirped-pulse amplification at repetition rate of 1 MHz,” Chinese Optics Letters 19, 093201 (2021)

[66] Y. Zhang, J. S. Wang, H. Teng, S. B. Fang, J. L. Wang, G. Q. Chang, and Z. Y. Wei, “Double-pass pre-chirp managed amplification with high gain and high average power,” Opt. Lett. 46, 3115 (2021)

[65] J. S. Wang, Y. Zhang, J. L. Wang, Z. Y. Wei, and G. Q. Chang, “Recent progress of coherent beam combination in femtosecond fiber lasers [invited review],” Acta Phys. Sin. 70, 034206 (2021) 

[64] R. Z. Chen and G. Q. Chang, “Pre-chirp managed divided-pulse amplification using composite birefringent plates for pulse division and recombination: en route toward GW peak power,” Opt. Express 29, 6330 (2021)

[63] Q. -D. Cheng, H. –Y. Chung, R. Schubert, S. -H. Chia, S. Falke, C. N. Mudogo, F. X. Kaertner, G. Q. Chang, and C. Betzel, “Protein-crystal detection with a compact multimodal multiphoton microscope,” Communications Biology 3, 569 (2020)

[62] R. Z. Chen and G. Q. Chang, “Pre-chirp managed self-phase modulation for efficient generation of wavelength tunable energetic femtosecond pulses,” J. Opt. Soc. Am. B 37, 2388 (2020)

[61] Y. Zhang, R. Z. Chen, H. D. Huang, Y. Z. Liu, H. Teng, S. B. Fang, J. L. Wang, J. F. Zhu, F. X. Kaertner, G. Q. Chang, and Z. Y. Wei “Pre-chirp managed amplification of circularly polarized pulses using chirped mirrors for pulse compression,” OSA Continuum 3, 1988 (2020)

[60] Y. Hua, G. J. Zhou, W. Liu, X. Min, F. X. Kaertner, and G. Q. Chang, “Femtosecond two-color source synchronized at 100-as-precision based on SPM-enabled spectral selection,” Opt. Lett. 45, 3410 (2020)

[59] J. W. Jiang, S. B. Fang, Z. Y. Zhang, J. F. Zhu, H. N. Han, G. Q.  Chang, and Z. Y. Wei, “Monolithic 0-f scheme-based frequency comb directly driven by a high-power Ti:Sapphire oscillator,” Chin. Phys. Lett 37, 054201 (2020)

[58] G. Q. Chang, and Z. Y. Wei, “Ultrafast fiber lasers: an expanding toolbox,” iScience 23, 101101 (2020) (Invited Review)

[57] Q. Cao, F. X. Kaertner, and G. Q.  Chang, “Towards high power longwave mid-IR frequency combs: power scalability of high repetition-rate difference-frequency generation,” Opt. Express 28, 1369 (2020)

[56] Y. Zhang, J. L. Wang, M. Y. Ma, C. X. Dou, G. Q.  Chang, J. F. Zhu, and Z. Y. Wei, “Tm-doped mode-locked fiber laser with large modulation depth Res1.02Se0.98 nanosheet saturable absorber,” Jpn. J. Appl. Phys. 58, 10 (2019)

[55] X. D. Shao, H. N. Han, Y. B. S, H. B. Wang, Z. Y. Zhang, S. B. Fang, G. Q.  Chang, and Z. Y. Wei, “Precision locking CW laser to ultrastable optical frequency comb by feed-forward method,” AIP Advances 9, 115003 (2019)

[54] J. W. Jiang, S. B. Fang, G. Q.  Chang, H. Teng, H. N. Han, and Z. Y. Wei, “Megawatt peak power, octave-spanning Ti:sapphire oscillators,” Appl. Phys. Express 12, 102009 (2019)

[53] W. J. Liu, M. L. Liu, X. T. Wang, T. Shen, G. Q.  Chang, M. Lei, H. X. Deng, Z. M. Wei, and Z. Y. Wei, “Thickness-dependent ultrafast photonics of SnS2 nanolayers for optimizing fiber lasers,” ACS Appl. Nano Mater. 2, 2697 (2019)

[52] H. –Y. Chung, R. Greinert, F. X. Kaertner, and G. Q. Chang, “Multimodal imaging platform for optical virtual skin biopsy enabled by a fiber-based two-color ultrafast source,” Biomed. Opt. Express 10, 514 (2019)

[51] H. –Y. Chung, W. Liu, Q. Cao, R. Greinert, F. X. Kaertner, and G. Q.  Chang, “Novel fiber-based ultrafast source tunable between 1.15 μm and 1.35 μm for harmonic generation microscopy in human skin,” IEEE J. Sel. Topics in Quantum Elec. 25 (1) 1-8 (2019)

[50] G. Y. Liu, X. H. Jiang, A. M. Wang, G. Q.  Chang, F. X. Kaertner, and Z. G. Zhang, “Robust 700 MHz mode-locked Yb:fiber laser with a biased nonlinear amplifying loop mirror,” Opt. Express 26, 26003 (2018)

[49] G. J. Zhou, Q. Cao, F. X. Kaertner, and G. Q.  Chang, “Energy scalable, offset-free ultrafast mid-IR source harnessing self-phase modulation spectral selection,” Opt. Lett. 43, 2953 (2018)

[48] Y. Yu, H. Teng, H. B. Wang, L. N. Wang, J. F. Zhu, S. B. Fang, G. Q. Chang, J. L. Wang, and Z. Y. Wei, “Highly-stable mode-locked PM Yb-fibe laser with 10 nJ in 93-fs at 6 MHz using NALM,” Opt. Express 26, 10428 (2018)

[47] P. L. Yang, H. Teng, S. B. Fang, Z. Q. Hu, G. Q. Chang, J. L. Wang, and Z. Y. Wei, “65-fs, Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management,” Opt. Lett. 43, 1730 (2018)

[46] Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, N. Schimpf, T. Eidam, J. Limpert, A. Tuennermann, F. X. Kaertner, and G. Q. Chang, “87-W, 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb:YLF amplifier,” Opt. Lett. 43, 1686 (2018)

[45] Y. Hua, G. Q. Chang, F. X. Kaertner, and D. N. Schimpf, “Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10 nJ) pulses with low noise,” Opt. Express 26, 6427 (2018).

[44] H. –Y. Chung, W. Liu, Q. Cao, L. W. Song, F. X. Kaertner, and G. Q. Chang, “Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection,” Opt. Express 26, 3684 (2018)

[43] A. -L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Barre, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kaertner, “Laser system design for table-top free-electron laser,” High Power Laser Science and Engineering 6, e12 (2018)

[42] H. –Y. Chung, W. Liu, Q. Cao, F. X. Kaertner, and G. Q. Chang, “Er-fiber laser based, energy scalable ultrafast sources tunable in 1300-1700 nm,” Opt. Express 25, 15760 (2017)

[41] W. Liu, S. –H. Chia, H. –Y. Chung, R. Greinert, F. X. Kaertner, and G. Q. Chang, “Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multiphoton microscopy,” Opt. Express 25, 6822 (2017)

[40] W. Liu, C. Li, Z. Zhang, F. X. Kaertner, and G. Q. Chang, “Self-phase modulation enabled, wavelength-tunable fiber laser sources: an energy scalable approach,” Opt. Express 24, 15319 (2016)

[39] F. X. Kaertner, F. Ahr, A. -L. Calendron, H. Cankaya, S. Carbajo, G. Q. Chang, G. Cirmi, K. Doerner, U. Dorda, A. Fallahi, T. Hartin, M. Hemmer, R. Hobbs, Y. Hua, R. Huang, R. Letrun, N. Matlis, V. Mazalova, O. Muecke, E. Nanni, W. Putnam, K. Ravi, R. Reichert, I. Sarrou, X. Wu, H. Ye, L. Zapata, D. Zhang, C. Zhou, R. J. D. Miller, K. Berggren, H. Graafasma, A. Meents, R. W. Assmann, H. N. Chapman, and P. M. –L. Fromme “AXSIS: exploring the frontiers in attosecond X-ray science, imaging and spectroscopy,” Nuclear Instruments and Methods in Physics Research A S0168900216002564 (2016)

[38] G. J. Zhou, M. Xin, F. X. Kaertner, and G. Q. Chang, “Timing jitter of Raman solitons,” Opt. Lett. 40, 5105 (2015)

[37] A. G. Glenday, C. –H. Li, N. Langellier, G. Q. Chang, L.-J. Chen, G. Furesz, A. Zibrov, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph,” Optica 2, 250 (2015)

[36] W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tuennermann, F. X. Kaertner, and G. Q. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulse,” Opt. Lett. 40, 151 (2015).

[35] J. K. Lim, H. -W. Chen, S. H. Xu, Z. M. Yang, G. Q. Chang, and F. X. Kaertner, “3 GHz, Watt-level femtosecond Raman soliton source,” Opt. Lett. 39, 2060 (2014)

[34] S. –H Chia, L. –J Chen, Q. Zhang, O. D. Muecke, G. Q. Chang, and F. X. Kaertner, “Broadband continuum generation in mode-locked lasers with phase-matched output couplers,” Opt. Lett. 39, 1445 (2014)

[33] H. -W. Chen, H. Zia, J. K. Lim, S. H. Xu, Z. M. Yang, F. X. Kaertner, and G. Q. Chang, “3 GHz, Yb-fiber laser based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38, 4927 (2013)

[32] J. K. Lim, H. -W. Chen, G. Q. Chang, and F. X. Kaertner, “Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced fCEO stabilization,” Opt. Express 21, 4531 (2013)

[31] H. -W. Chen, J. K. Lim, S. –W. Huang, D. N. Schimpf, F. X. Kaertner, and G. Q. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express 20, 28672 (2012)

[30] G. Q. Chang, C. –H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express 20, 24987 (2012)

[29] H. -W. Chen, G. Q. Chang, S. H. Xu, Z. M. Yang, and F. X. Kaertner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37, 3522, (2012)

[28] C. –H. Li*, G. Q. Chang*, A. Glenday, D. F. Phillips, F. X. Kaertner, and R. L. Walsworth, “Conjugate Fabry-Perot cavity pair for astro-combs,” Opt. Lett. 37, 3090 (2012) (*both authors contributed equally to this work)

[27] D. F. Phillips, A. G. Glenday, C. –H. Li, C. Cramer, G. Furesz, G. Q. Chang, A. J. Benedick, L.-J. Chen, F. X. Kärtner, S. Korzennik, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb” Opt. Express 20, 13711 (2012)

[26] X. Q. Ma, C. –H. Liu, G. Q. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express 19, 26515 (2011)

[25] G. Q. Chang, L. –J. Chen, and F. X. Kaertner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6636 (2011)

[24]  H. –W. Chen, T. Sosnowski, C. –H. Liu, L. –J Chen, J. Birge, A. Galvanauskas, F. X. Kaertner, and G. Q. Chang*, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion-mirror based compressor,” Opt. Express 18, 24699 (2010) (*corresponding author)

[23] L.-J. Chen, G. Q. Chang, C.-H. Li, A. J. Benedick, D. F. Phillips, R. L. Walsworth,  and F. X. Kärtner, “Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets,” Opt. Express 18, 23204 (2010) (selected as research highlight by Nature Photonics, January 2011)

[22] A. J. Benedick*, G. Q. Chang*, J. R. Birge, L.-J. Chen, A. G. Glenday, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express 18, 19175 (2010) (*both authors contributed equally to this work)

[21] G. Q. Chang, L. –J. Chen, and F. X. Kaertner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35, 2361 (2010) (selected as research highlight by Nature Photonics, September 2010)

[20] C. –H. Li, A. Glenday, A. Benedick, G. Q. Chang, L. –J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kaertner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, R. L. Walsworth, “In-situ determination of astro-comb calibration lines to better than 10 cm/s,” Opt. Express 18, 13239 (2010)

[19] G. Q. Chang, C. –H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kaertner, “Towarda broadband astro-comb: Effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18, 12736 (2010)

[18] G. Q. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “Femtosecond Yb-Fiber CPA system based on Chirped-Volume-Bragg-Gratings,” Opt. Lett. 34, 2952  (2009)

[17] G. Q. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15, 16308 (2007)

[16] K. H. Liao, A. G. Mordovanakis, B. Hou, G. Q. Chang, M. Rever, G. A. Mourou, J. Nees, and A. Galvanauskas, “Generation of hard X-rays using an ultrafast fiber laser system,” Opt. Express 15, 13942 (2007)

[15] G. Q. Chang, C. J. Divin, C. H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Generation of radially polarized THz pulses via velocity mismatched optical rectification,” Opt. Lett. 32, 433 (2007)

[14] G. Q. Chang, C. J. Divin, C. H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909 (2006)

[13] G. Q. Chang, H. G. Winful, A. Galvanauskas, and T. B. Norris, “Incoherent self-similarities of the coupled amplified nonlinear Schrödinger equations,” Phys. Rev. E 73, 016616 (2006)

[12] G. Q. Chang, H. G. Winful, A. Galvanauskas, and T. B. Norris, “Self-similar parabolic beam generation and propagation,” Phys. Rev. E 72, 016609 (2005)

[11] G. Q. Chang, A. Galvanauskas, H. G. Winful, and T. B. Norris, “Dependence of Parabolic pulse amplification on stimulated Raman scattering and gain bandwidth,” Opt. Lett. 29, 2647 (2004)

[10] J. Y. Ye, G. Q. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O'Donnell, J. R. Baker, “Trapping cavitation bubbles with a self-focused laser beam,”  Opt. Lett. 29, 2136 (2004)

[9] G. Q. Chang, T. B. Norris, and H. G. Winful, “Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,” Opt. Lett. 28, 546 (2003)

[8]  C. Y. Lou, L. Huo, G. Q. Chang, and Y. Z. Gao, “A novel approach to clock division and frame clock extraction,” Chinese J. Electron. 11, 58 (2002)

[7] C. Y. Lou, L. Huo, G. Q. Chang, and Y. Z. Gao, “Experimental study of clock division using the optoelectronic oscillator,” IEEE Photon. Tech. Lett., 14, 1178 (2002)

[6] M. Han, C. Y. Lou, Y. Wu, G. Q. Chang, Y. Z. Gao, and Y. H. Li, “Generation of pedestal-free 10 GHz pulses from a comb-like dispersion profiled fiber compressor and its application in supercontinuum generation,” Chinese Phys. Lett. 17, 806 (2000)

[5] G. Q. Chang, C. Y. Lou, Y. H. Li, Y. Z. Gao, and B. K. Zhou, “Novel analytic theory for laser mode-locking,” Int. J. IRMMW 20, 2063 (1999)

[4] Y. H. Li, C. Y. Lou, G. Q. Chang, and Y. Z. Gao, “Theoretical study on the actively mode-locked fiber laser with the q-parameter and the ABCD law,” IEEE Photonic. Tech. Lett., 11, 1590 (1999)

[3] G. Q. Chang, C. Y. Lou, Y. H. Li, and Y. Z. Gao, “Novel analytic theory for actively mode-locked fiber laser,” Acta Physica Sinica 8, 838 (1999)

[2] Y. H. Li, C. Y. Lou, J. Wu, G. Q. Chang, B. Y. Wu, and Y. Z. Gao, “Self-stable 10GHz actively mode-locked fiber ring laser,” Acta Photonica Sinica, 28, 346 (1999) (in Chinese)

[1] C. Y. Lou, Y. H. Li, J. Wu, G. Q. Chang, B. Y. Wu, Y. Z. Gao, and B. K. Zhou, “Experimental study on stable 10-GHz actively mode-locked fiber ring laser,” Chinese Journal of Lasers, B8, 193 (1999)

 

科普文章

[14] G. Q. Chang, Surfing the meta-surface: a conversation with Prof. Tin-ping Tsai, Advanced Photonics (November/December, 2023)

[13] G. Q. Chang and Yuanhao Mao, An interview with Prof. Gerard Mourou, High Power Laser Science & Engineering 11, e74 (2023)

[12] G. Q. Chang, Peter Franken and nonlinear optics, Physics (July, 2022)

[11] G. Q. Chang, New opportunities with an old optical material: an interview with Prof. Marko Loncar, Advanced Photonics (May/June, 2022)

[10] G. Q. Chang, Wonderland of silicon photonics: an interview with Prof. Michal Lipson, Advanced Photonics (July/August, 2021)

[9] G. Q. Chang, Journey from solitons to nanophotonics: an interview with Prof. Yuri Kivshar, Advanced Photonics (January/February, 2021)

[8] G. Q. Chang, Laser, domains, and more: an interview with Prof. Shining Zhu, Advanced Photonics (September/October, 2020)

[7] G. Q. Chang, A brief history of laser invention, OE Products&News (September, 2020)

[6] G. Q. Chang, Interview with Prof. Qihong Lou, OE Products&News (June, 2020)

[5] G. Q. Chang and Z. Y. Wei, “Ultrafast and ultrahigh-intensity lasers,” Knowledge of Modern Physics (Jan., 2019)

[4] G. Q. Chang, “Brief introduction to mystery laser light,” People’s Daily (Jan. 19th, 2019)

[3] G. Q. Chang, “From bird chirp to high intensity ultrafast lasers: Nobel physics prize in 2018,” Wechat Subscription (Oct. 3rd, 2018)

[2] H. -Y. Chung, F. X. Kaertner, and G. Q. Chang, “New light choice for virtual skin biopsy: multiphoton microscopy driven by fiber-based sources,” Imaging & Microscopy 4, 2 (2018)

[1] K.-C. Hou, C.-H. Liu, K.-H. Liao, A. Mordovanakis, M.-Y. Cheng, G. Q. Chang, J. Nees, S. George, K. Takenoshita, M. Richardson, and A. Galvanauskas, “High intensity fiber lasers: emerging new applications and new fiber technologies,” LEOS Newsletter, October issue (2007)



目前的研究课题及展望:

在研项目包括国家自然科学基金委国家重大科研仪器研制项目、中科院重点部署科研专项课题、国家重点研发计划“新型显示与战略性电子材料”重点专项课题、广东省重点领域研发计划课题、国家自然科学基金委“新型光场调控物理与应用”重大研究计划。在研项目主要开展以下三个方向的研究:

1.   新型飞秒激光驱动的多光子生物医学成像

2.  高功率高能量飞秒光纤激光

3.  高功率低噪声中红外飞秒激光频率梳的关键技术

 



培养研究生情况:

已经毕业博士生3名,目前在读博士生8名,拟每年招收硕士、博士共2-3名。

电话:
010-82649201

Email:
guoqing.chang@iphy.ac.cn


联系我们

CANTACT US